

MINOR PETUNIASTERONES FROM *PETUNIA HYBRIDA*

CARL A. ELLIGER*, MABRY BENSON, ROBERT E. LUNDIN and ANTHONY C. WAISS, JR

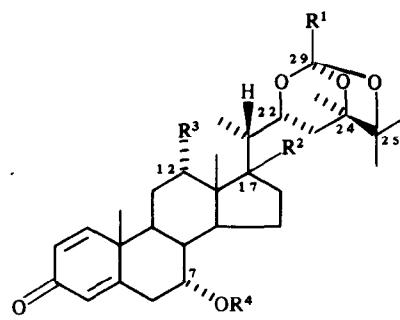
U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, U.S.A.

(Received in revised form 25 February 1988)

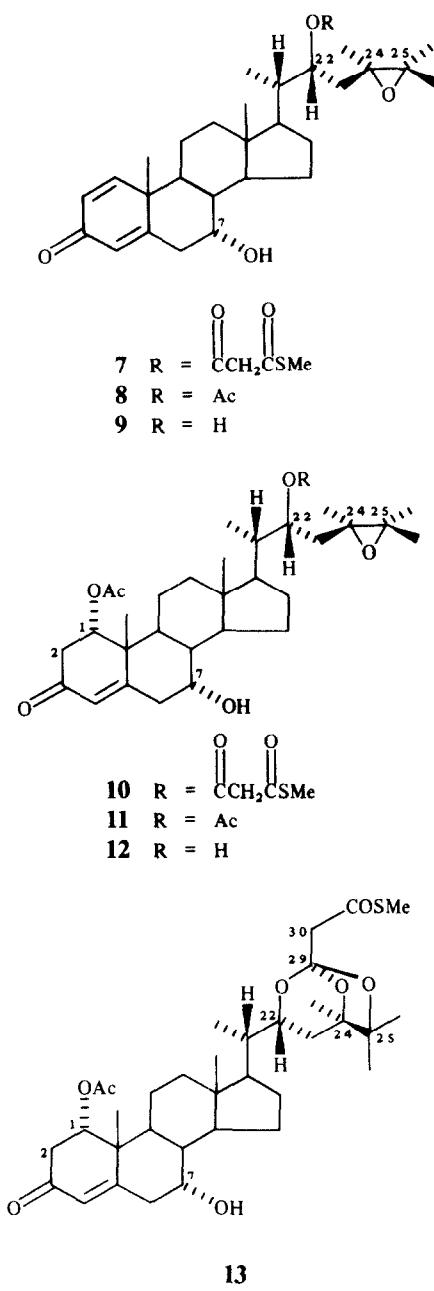
Key Word Index—*Petunia hybrida*; Solanaceae, phytosterols; ergostanoids; host plant resistance

Abstract—Seven new steroids have been isolated from leaves and stems of *Petunia hybrida*. They are 30-hydroxy petuniasterone A (C-30 epimeric mixture), 1 α -acetoxy-1,2-dihydropetuniasterone A (designated petuniasterone E), (22R,24S)-7 α ,24-dihydroxy-22,25-oxidoergosta-1,4-dien-3-one (petuniasterone F), C-24 epimers of (22R)-7 α ,22,24,25-tetrahydroxyergosta-1,4-dien-3-one (petuniasterones G₁ and G₂) and C-24 epimers of (22R)-1 α -acetoxy-7 α ,22,24,25-tetrahydroxyergost-4-en-3-one (petuniasterones H₁ and H₂). The compounds which have 1 α -acetoxy groups may easily be converted into the corresponding A-ring dienes by mild base. The orthoesters and other side-chain variants may be formed from the 24,25-epoxy compounds which co-occur in the plant.

INTRODUCTION


Petuniasterones [1, 2] are steroidal ketones which occur in varying levels within the commercial varieties of *Petunia hybrida*. The structural aspects of these substances caused us to categorize them into several groups based on common features and designate the trivial names petuniasterones A–D, each of which had a keto group in position-3 and a 7 α -oxygen function. The A-rings possessed 1,4-dien-3-one systems or alternatively 1 α -acetoxy-4-en-3-one functionalities. In addition, the side chains at C-17 were highly oxygenated, having bicyclic orthoester systems or a 24,25-epoxy group with a hydroxy or ester substituent at C-22. Compound 1a, which we have termed petuniasterone A, is generally present in the highest concentration within the plant (up to *ca* 300 ppm dry wt) and it appears to inhibit the growth of *Heliothis zea* (corn earworm) larvae as shown by preliminary experiments using artificial diets (unpublished). Petuniasterone A possesses the unusual thioester moiety attached to the sidechain orthoester, but this functionality does not appear to be responsible for insect-inhibitory activity since petuniasterone D (4) having only the corresponding orthoacetate is also active (unpublished). We have identified several other derivatives of petuniasterones A and D (2, 3 and 5) [2] as well as two sets of compounds (7–9 and 10–12) having 24,25-epoxy substitution [1]. Those having the A-ring dienone are derivatives of petuniasterone C (9) and the corresponding 1 α -acetoxy-4-enones are related to petuniasterone B (12). Petuniasterones B and C do not appear to be active against *Heliothis zea* (unpublished).

The present communication describes the identification of seven minor petuniasterones. Compound 6a was shown to be a 30-hydroxy derivative of petuniasterone A. The 1 α -acetoxy-1,2-dihydro- analogue of petuniasterone A (13), termed petuniasterone E, was also present. The other substances isolated are less substituted on the side chain. Petuniasterone F (14a) has the ring closed 22–25 oxido system whereas the petuniasterones of the G series (15a, b) have trihydroxy side chains. Petuniasterones H₁ (16a)


and H₂ (16b) are similar, but have the corresponding 1 α -acetoxy enone system in the A-ring.

RESULTS AND DISCUSSION

From material remaining after isolation of several batches of petuniasterones A to D it was possible to obtain small quantities of the seven new substances. Compound 6a, C₃₃H₄₆O₇S had ¹H and ¹³C NMR spectra (Tables 1 and 2) that showed a close relationship of this material to petuniasterone A (1a), but one additional hydroxyl was present (mass spectrum). The UV, λ_{max} 243 nm, and IR spectra, ν_{max} 1685 and 1660 cm⁻¹ were likewise similar to those of 1a [1]. The characteristic AB quartet (δ 3.04 and 3.10) of CH₂-30 in the ¹H NMR of

1a R¹ = CH₂COSMe, R², R³, R⁴ = H
1b R¹ = CH₂COOMe, R², R³, R⁴ = H
2 R¹ = CH₂COSMe, R² = β -OH, R³, R⁴ = H
3 R¹ = CH₂COSMe, R² = β -OH, R³ = H, R⁴ = Ac
4 R¹ = Me, R², R³, R⁴ = H
5 R¹ = Me, R² = H, R³ = OAc, R⁴ = Ac
6a R¹ = ³⁰CHOHCOSMe, R², R³, R⁴ = H
6b R¹ = ³⁰CHOAcCOSMe, R², R³ = H, R⁴ = Ac

1a was no longer observed and new signals at δ 4.33 and 4.35 appeared. This pair of singlets is associated with the proton α - to an epimeric OH at C-30. ^1H NMR signals of CH_3 -21 and CH_3 -27 also appeared as double lines. The ^{13}C NMR spectrum of **6a** confirms the position of hydroxylation since the signals of CH_2 -30 (δ 50.3) in **1a** was replaced by a pair of lines at δ 77.7 and 78.2 corresponding to CHOH -30. In the ^{13}C NMR spectrum of **6a**, 10 additional peaks associated with carbons in close proximity to the epimeric centre are doubled. Treatment of **6a** with acetic anhydride gave the 7,30-diacetate **6b**. The ^1H NMR spectrum of **6b** (see Experimental) showed typical downfield shifts for the signals of acetylated positions, CH-7 and CH-30 (ca 1.06 ppm) [3]. As in the case of **6a**, we noted numerous double peaks for signals associated with carbons and protons near the epimeric

center. Although preparative separation of this epimeric mixture by HPLC could not be accomplished, an analytical separation showed partial resolution of **6a** into two components in the ratio of ca 2:1 which agrees with the proportions of the NMR signals.

Compound **13**, $\text{C}_{34}\text{H}_{50}\text{O}_8\text{S}$, resembles petuniasterone A (**1a**), but it has a 1- α -acetoxy-4-en-3-one A-ring, and we have given it the name petuniasterone E. Comparison of the ^1H and ^{13}C NMR spectra of **13** with those of the petuniasterone B series [1] confirms the substitution and stereochemistry of Ring-A. Further evidence for the proposed structure is provided by conversion of **13** into the methyl ester corresponding to petuniasterone A (**1b**) [1] by treatment with dilute sodium methoxide in methanol. Facile elimination of the 1-acetoxy group is characteristic of this type of compound [1] and transesterification of the thiolmethyl ester is rapid under these conditions.

Petuniasterone F (**14a**), $\text{C}_{28}\text{H}_{42}\text{O}_4$, is isomeric with petuniasterone C (**9**). The ^1H and ^{13}C NMR spectra (Tables 1 and 2) show that the A-ring dienone system is present. Since no additional unsaturation was observed (^{13}C NMR), one more ring is necessary to account for the elemental composition. It was possible to convert **9** into **14a** by treatment with weak perchloric acid (0.025 M) in dioxane thereby showing that the additional ring must also be associated with the side chain. On treatment with acetic anhydride, **14a** gave the diacetate, **14b**. This product had spectral characteristics showing acetylation at position-7 [2] as well as acetylation at a tertiary position. Since no acetate shift to lower field was observed in the ^1H NMR for the proton attached to position-22, it was apparent that the oxygen at this position is involved in ring formation. We have assigned the structure and stereochemistry of **14a** on the basis of concerted ring opening of the 24,25-epoxide of **9** under acid catalysis with formation of the 22,25-oxido system.

Petuniasterones G_1 and G_2 (**15a** and **15b**) are C-24 epimers, $\text{C}_{28}\text{H}_{44}\text{O}_5$, which could be separated by HPLC. A mixture of **15a** and **15b** could be prepared from petuniasterone C (**9**) by opening of the epoxide ring in 20% aqueous dioxane. About 45% yield of the two epimers was obtained along with 25% of **14a**.

Petuniasterones H_1 and H_2 (**16a** and **16b**), $\text{C}_{30}\text{H}_{48}\text{O}_7$, are related to G_1 and G_2 , respectively, but have the 1-acetoxy-4-en-3-one system. Both **16a** and **16b** could be converted into **15a** and **15b** by dilute sodium methoxide in methanol. Comparison of the respective ^1H NMR and ^{13}C NMR spectra of the G and H series revealed minor chemical shift differences associated with the side chains that enabled the members of each set to be correlated with the other (Tables 3 and 4).

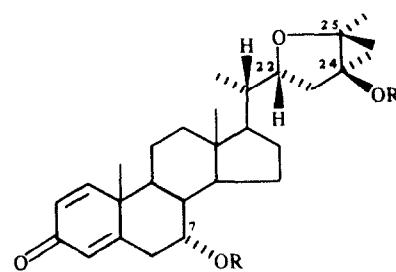


Table 1 ^1H NMR data* for compounds **1a**, **6**, **13**, **14a** and **14b**

	Compound				
	1a	6a epimers	13	14a	14b
1-H	7.08 <i>d</i> (10)	7.08 <i>d</i> (10)	5.26 <i>t</i> (3)	7.08 <i>d</i> (10)	7.07 <i>d</i> (10)
2-H	6.24 <i>dd</i> (10, 2)	6.24 <i>dd</i> (10, 2)	2.63 <i>mult.</i>	6.25 <i>dd</i> (10, 2)	6.27 <i>dd</i> (10, 2)
4-H	6.13 <i>br t</i> (ca 2)	6.14 <i>br s</i>	5.88 <i>br s</i>	6.15 <i>t</i> (2)	6.02 <i>d</i> (2)
6-H α	2.50 <i>dd</i> (14, 3)	2.49 <i>dd</i> (14, 3)	2.50 <i>dd</i> (16, 3)	2.49 <i>dd</i> (14, 3)	6-H's 2.62 <i>d</i> (3)
6-H β	2.75 <i>ddd</i> (14, 3, 2)	2.70 <i>br d</i> (14)	2.70 <i>dd</i> (16, 3)	2.74 <i>ddd</i> (14, 3, 2)	
7-H	4.04 <i>br s</i>	4.04 <i>br s</i>	3.95 <i>br q</i> (2)	4.04 <i>br s</i>	5.04 <i>br q</i> (ca 3)
12-H β	2.02 <i>dt</i> (12.5, 4)	2.02 <i>br d</i> (12.5)		2.04 <i>dt</i> (13, 4)	
20-H	1.78 \ddagger $\text{H}_{20-22} = 4$				<i>ca</i> 1.9, m $J_{20-21} = 7$ $J_{21-22} = 4$
22-H	4.21 <i>dt</i> (11.5, 4)	4.23 <i>dt</i> (11.5, 4)	4.22 <i>dt</i> (11, 4.5)	4.24 <i>dt</i> (11, 5)	4.06 <i>ddd</i> (10, 6, 4)
23-H's	1.47 \ddagger $J_{22-23} = 4$				2.49, <i>dd</i> (14, 6) 1.88, <i>dd</i> (14, 10)
18-Me	0.76, <i>s</i>	0.76, <i>s</i>	0.72, <i>s</i>	0.75, <i>s</i>	0.73, <i>s</i>
19-Me	1.23, <i>s</i>	1.23, <i>s</i>	1.27 \ddagger , <i>s</i>	1.23, <i>s</i>	1.24, <i>s</i>
21-Me	0.96	0.92, 0.95	0.95	0.92	0.90
	<i>d</i> (7)	<i>d</i> 's (7)	<i>d</i> (7)	<i>d</i> (7)	<i>d</i> (7)
26-Me	1.30, <i>s</i>	1.33, <i>s</i>	1.31, <i>s</i>	1.23 \ddagger , <i>s</i>	1.48, <i>s</i>
27-Me	1.12 \ddagger , <i>s</i>	1.14 \ddagger , 1.17 \ddagger <i>s, s</i>	1.12 \ddagger , <i>s</i>	1.13 \ddagger , <i>s</i>	1.16 \ddagger , <i>s</i>
28-Me	1.21 \ddagger , <i>s</i>	1.22 \ddagger , <i>s</i>	1.20 \ddagger , <i>s</i>	1.26 \ddagger , <i>s</i>	1.27 \ddagger , <i>s</i>
COSMe	2.31, <i>s</i>	2.34, <i>s</i>	2.31, <i>s</i>		
CH_2CO	3.04, 3.10 <i>d</i> 's (14)		3.04, 3.10 <i>d</i> 's (14.5)		
CHOHCO		4.33, 4.35 \ddagger , <i>s, s</i>			
OAc			2.03, <i>s</i>		2.02, 2.03, <i>s's</i>

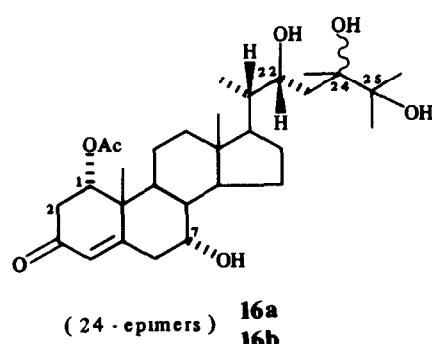
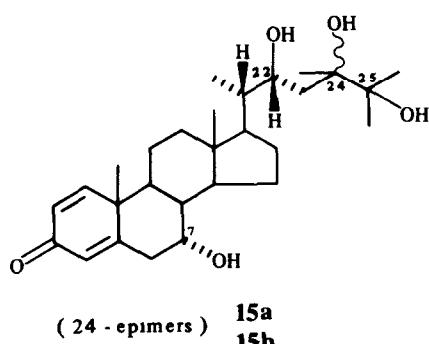


* δ value in CDCl_3 ; coupling constants (Hz) in parentheses \ddagger Value obtained by stepwise decoupling. \ddagger Values may be interchanged. \ddagger After D_2O exchange, two lines are distinguishable.

Table 2 ^{13}C NMR data* for compounds **1a**, **6a**, **13**, **14a** and **14b**

C	1a	6a epimers	13	14a	14b
1	155.6, CH†	155.7, CH	73.8, CH	155.6, CH	155.2
2	127.6, CH†	127.5, CH	39.4, CH ₂	127.6, CH	127.8
3	185.6, C	185.7, C	194.9, C	185.6, C	185.8
4	127.1, CH†	127.0, CH	126.4, CH	127.1, CH	126.6
5	164.5, C	164.9, C	163.6, C	164.7, C	164.0
6	41.0, CH ₂ †	41.0, CH ₂	40.9, CH ₂	40.9, CH ₂	37.3
7	69.5, CH†	69.5, CH	67.8, CH	69.6, CH	72.0
8	38.5, CH	38.3, CH	39.3 ^a , CH	37.8, CH	38.3
9	44.4, CH	44.2, CH	36.8 ^a , CH	44.4, CH	45.2
10	43.4 ^a , C	43.4 ^a , C	41.7 ^b , C	43.5 ^a , C	43.2 ^a
11	22.5, CH ₂	22.4, CH ₂	20.3, CH ₂	22.5, CH ₂	22.5
12	39.0, CH ₂ †	38.9, CH ₂	39.1, CH ₂	38.9, CH ₂	38.8
13	42.9 ^a , C	42.8 ^a , C	42.7 ^b , C	43.1 ^a , C	43.0 ^a
14	49.9, CH	49.8, CH	50.2, CH	49.8, CH	49.6
15	23.8, CH ₂	23.7, CH ₂	23.6, CH ₂	23.9, CH ₂	23.7
16	27.2, CH ₂	27.1, 27.2, CH ₂	27.3, CH ₂	27.4, CH ₂	27.3
17	52.0, CH	51.8, CH	52.0, CH	53.5, CH	53.3
18	11.8, CH ₃ †	11.4, CH ₃	11.7, CH ₃	11.7, CH ₃	11.6
19	18.3, CH ₃ †	18.2, CH ₃	18.1, CH ₃	18.3, CH ₃	18.4
20	39.8, CH†	39.6, CH	38.5 ^a , CH	39.8, CH	37.7
21	12.5, CH ₃ †	12.4, 12.5, CH ₃	12.5, CH ₃	12.5, CH ₃	12.3
22	70.2, CH†	70.4, 70.7, CH	70.2, CH	77.8, CH	ca. 77
23	30.3, CH ₂ †	30.6, CH ₂	30.3, CH ₂	38.9, CH ₂	37.7
24	82.9 ^b , C	83.16 ^b , 83.22 ^b , C	82.9 ^c , C	84.2 ^b , C	89.2 ^b
25	81.8 ^b , C	82.19 ^b , 82.25 ^b , C	81.8 ^c , C	81.0 ^b , C	84.2 ^b
26	19.9, CH ₃	19.8, CH ₃	19.9, CH ₃	21.8 ^c , CH ₃	19.3 ^c
27	20.4 ^c , CH ₃	20.2 ^c , 20.3 ^c , CH ₃	20.4 ^d , CH ₃	22.9 ^c , CH ₃	22.2 ^c
28	24.9 ^c , CH ₃	24.7 ^c , 24.9 ^c , CH ₃	24.9 ^d , CH ₃	27.8 ^c , CH ₃	25.9 ^c
29-orthoester	115.3, C	115.29, 115.32, C	115.4, C		
30- $^{13}\text{CH}_2\text{CO}$	50.3, CH ₂		50.2, CH ₂		
30- $^{13}\text{CHOHCO}$		77.7, 78.2, CH			
31- ^{13}COS	193.3, C	198.5, 198.6, C	193.3, C		
S-Me	12.0, CH ₃	11.8, 12.4, CH ₃	12.0, CH ₃		
Acetate			170.2, C		
			21.0, CH ₃		

*In ppm from internal TMS for CDCl_3 solutions^{a-c}Values with like superscripts in each column may be interchanged

†Assigned by C-H correlation spectroscopy

The extremely facile opening of the epoxide ring of **9** prompted us to examine the reactivity of other compounds having the same functionality. Thus, **7** was treated with 0.01 M perchloric acid in dioxane to give **1a** in 50% yield after chromatography. This reaction was very rapid, being complete in less than one min and formed the orthoester without significant byproducts. The reaction of **8** to produce **4** was equally rapid and a 60% yield of the latter compound was obtained upon work-up after one min. Acid treatment of the more sensitive **10** gave a mixture of several components, from which could be obtained 20% of **13** and 5% of **1a**. In this case, it appears that acid catalysed elimination of the 1-acetoxy group is competitive with formation of the orthoester system of the side chain. Several other, more polar compounds that were produced in this run were not identified.

The ease of formation of the pendant orthoesters from the epoxy side chain esters and production of the 22,25-oxido-ring as well as trihydroxy side chain derivatives from the hydroxy epoxide points to the epoxides as

biogenetic precursors. It is likely that a 1-acetoxy-4-en-3-one having the 24,25-epoxide such as **10** is initially formed. Successive esterification of the 22-OH, followed by the steps illustrated above yields all of the main petunasterone classes found in the plant. Further hydroxylation and acetoxylation can give the more highly oxygenated derivatives. We have observed that a number of steroid materials from these *Petunia* isolates remain unidentified and suggest that they should mainly fit into the missing spaces within the scheme suggested.

EXPERIMENTAL

Mps are corr. Optical rotations were measured at ca. 26°. IR spectra were recorded in CHCl_3 solns. UV spectra in MeOH . ^1H NMR spectra were obtained at 90 or 200 MHz and ^{13}C NMR spectra at 50 MHz. NMR assignments were facilitated by decoupling methods and by the use of 2D proton-proton and carbon-proton correlation techniques. MS spectra were obtained with NH_3 chemical ionization. Silica gel was Merck,

Si60, 70–230 mesh; Sephadex, LH-20 from Pharmacia, HPLC columns were commercially obtained. Solvents were HPLC grade. Detection was by UV at 254 nm using a monitor equipped with 0.5 mm pathlength prep cell.

Plant material *P. hybrida* Vilm., commercial variety "Royal Cascade" was grown in outdoor beds in Albany, California. Leaf and stem material was harvested at intervals during the growing seasons of 1986 and 1987.

Isolation procedure This was carried out as previously described on freeze-dried plant material [1]. After removal of the more abundant sterones, rechromatography of the residue yielded compounds 6, 13, 14, 15a and b and 16a and b. Columns and conditions are as follows: Rainin Dynamax Silica, 21.4 mm diam \times 250 mm with guard, 20% 2-propanol in hexane, Alltech R-Sil C-18, 10 mm diam \times 250 mm, 30%, 40% or 50% H_2O in MeCN; and Whatman Partisil-10 PAC, 9 mm diam \times 500 mm, 10% 2-propanol in hexane.

Compound	Elution Zone (ml)		
	Dynamax silica	R Sil C-18 (% Water)	PAC
6a	164–216	28–34(30)	148–170
13	164–216	42–45(30)	87–100
14	300–400	34–45(30)	190–250
15a		24–27(40)	
15b		27–32(40)	
16a		23–28(50)	
16b		28–33(50)	

Table 3. 1H NMR data* for compounds 15 and 16

	Compound			
	15a	15b	16a	16b
1-H	7.30 <i>d</i> (10)	7.30 <i>d</i> (10)	5.24 <i>t</i> (3)	5.25 <i>t</i> (3)
2-H	6.22 <i>dd</i> (10, 2)	6.22 <i>dd</i> (10, 2)	ca 2.7 <i>mult</i>	ca 2.7 <i>mult</i>
4-H	6.09 <i>br t</i> (ca 2)	6.09 <i>br t</i> (ca 2)	5.80 <i>br s</i>	5.80 <i>br s</i>
6-H α	2.48 <i>dd</i> (14, 3)	2.48 <i>dd</i> (14, 3)	2.48 <i>dd</i> (17, 3)	2.48 <i>dd</i> (17, 3)
6-H β	2.79 <i>ddd</i> (14, 3, 2)	2.79 <i>ddd</i> (14, 3, 2)	2.75 <i>dd</i> (17, 3)	2.76 <i>dd</i> (17, 3)
7-H	4.02 <i>br q</i> (2)	ca. 4.05 <i>mult</i>	ca 3.95 <i>mult</i>	3.92 <i>br q</i> (ca 2)
12-H β	2.06 <i>dt</i> (13, 4)	2.06 <i>dt</i> (13, 4)		
22-H	3.96 <i>mult</i>	ca 4.05 <i>mult</i>	ca. 3.95 <i>mult</i>	4.08 <i>dd</i> (11, 3)
18-Me	0.82, <i>s</i>	0.82, <i>s</i>	0.78, <i>s</i>	0.78, <i>s</i>
19-Me	1.24 \dagger , <i>s</i>	1.22 \dagger , <i>s</i>	1.24 \dagger , <i>s</i>	1.23, <i>s</i>
21-Me	0.96 <i>d</i> (7)	0.96 <i>d</i> (7)	0.94 <i>d</i> (7)	0.96 <i>d</i> (7)
26-Me	1.19 \dagger , <i>s</i>	1.17 \dagger , <i>s</i>	1.18 \dagger , <i>s</i>	1.17 \dagger , <i>s</i>
27-Me	1.22 \dagger , <i>s</i>	1.19 \dagger , <i>s</i>	1.22 \dagger , <i>s</i>	1.19 \dagger , <i>s</i>
28-Me	1.28 \dagger , <i>s</i>	1.27 \dagger , <i>s</i>	1.31 \dagger , <i>s</i>	1.31 \dagger , <i>s</i>
OAc			2.01, <i>s</i>	2.01, <i>s</i>

* δ value in CD_3OD , coupling constants (Hz) in parentheses.

\dagger Value may be interchanged.

30-Hydroxy petuniasterone A (6a). Compound 6a was obtained as a *ca* 2:1 mixt of C-30 epimers (Tables 1,2) that could not be sepd preparatively under the chromatographic conditions employed. $[\alpha]_{D, nm}$: (589) +50°, (578) +52°, (546) +58°, (436) +88°, (365) +64° ($CHCl_3$, c1); IR $\nu_{max}^{CHCl_3}$ 3550 *br* (*OH*), 1685 (COSMe), and 1660 cm^{-1} (conj. CO); UV λ_{max}^{MeOH} 243 nm ($\log \epsilon$ 4.35); MS *m/z* (rel. int %): 575.3020 ($[MH]^+$, 19), 557 ($[MH] - H_2O$ $^+$, 4). $C_{32}H_{46}O_7S + H$ requires: $[MH]^+$ 575.3042.

30-Acetoxy petuniasterone A 7-acetate (6b). Acetylation of 6a was carried out in refluxing Ac_2O for 3.5 hr. Excess reagent was evapd and the product isolated by HPLC on the PAC column (elution vol. 84–105 ml, 10% 2-propanol–hexane). IR $\nu_{max}^{CHCl_3}$ cm^{-1} 1750, 1730, 1680, 1665; 1H NMR (200 MHz, $CDCl_3$): δ 0.76 (3H, *s*, 18-Me) 0.93 and 0.95 (3H, *two d*, *J* = 7, 21-Me), 1.14 and 1.16 (3H, *two s*, 27-Me), 1.22 (3H, *s*, Me-28), 1.25 (3H, *s*, Me-19), 1.32 (3H, *s*, Me-26), 1.99 (3H, *s*, 7-OAc), 2.21 and 2.22 (3H, *two s*, 30-OAc), 2.30 and 2.31 (3H, *two s*, SME), 2.63 (2H, *br s*, CH_2 -6), 4.21 (1H, *dt*, *J* = 11.5 and 4, H-22), 5.10 (1H, *br q*, *J* = 3, H-7), 5.40 and 5.41 (1H, *two s*, H-30), 6.00 (1H, *br d*, *J* = 2, H-4), 6.24 (1H, *dd*, *J* = 10 and 2, H-2), 7.04 (1H, *d*, *J* = 10, H-1); ^{13}C NMR (50 MHz, $CDCl_3$): δ , *inter alia*, 114.6 and 114.7 (C-29), 76.5 and 77.6 (CH-30), 194.04 and 193.99 (COS), 11.78 and 11.83 (SMe) 170.3 and 21.1 (OAc-7), 169.25, 169.39 and 20.72, 20.76 (OAc-30); MS *m/z* (rel. int %): 659.3201 ($[MH]^+$, 43), 599 ($[MH] - HOAc$ $^+$, 14). $C_{36}H_{50}O_9S + H$ requires: $[MH]^+$ 659.3250.

Petuniasterone E (13). $[\alpha]_{D, nm}$: (589) +78°, (578) +81°, (546) +91°, (436) +146°, (365) +13° ($CHCl_3$, c1.00); IR $\nu_{max}^{CHCl_3}$ cm^{-1} 3500 *br* (*OH*), 1735 (acetate), and 1675 (COSMe and conj CO), UV λ_{max}^{MeOH} nm 241 ($\log \epsilon$ 4.19); MS: *m/z* (rel. int %): 619.3298 ($[MH]^+$, 40), 559 ($[MH] - HOAc$ $^+$, 4). $C_{34}H_{50}O_8S$ requires: $[MH]^+$ 619.3304.

Conversion of petunasterone E (13) into petunasterone A methyl ester (1b). A soln of **13** (ca 13 mg) in 0.5 M NaOMe-MeOH (1 ml) was allowed to stand 2 hr at room temp, HOAc 50 μ l was added, the mixt taken to dryness *in vacuo* and the residue triturated with CH₂Cl₂. After filtration of the CH₂Cl₂ soln through a 0.45 μ m Teflon membrane filter followed by concn, the product was chromatographed on the PAC column (10% 2-propanol/hexane) to yield **1b**. This material was chromatographically and spectroscopically identical to previously identified **1b** [1].

Petunasterone F (14a). From CHCl₃, mp 266–268° (darkens), $[\alpha]_{(25, \text{nm})}$: (589) + 22°, (578) + 23°, (546) + 24°, (436) + 23°, (365) – 87° (CHCl₃, c 0.5), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{–1} 3450 br (OH), and 1670 cm^{–1} (conj CO); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 246 (log_ε 4.14); MS *m/z* (rel int %) 443 3209 ([MH]⁺, 100), 425 ([MH]⁺ – H₂O, 95), 407 ([MH]⁺ – 2H₂O, 21). C₂₈H₄₂O₄ + H requires [MH]⁺ 443 3161.

Acetylation of petunasterone F (14a). Petunasterone F, 4 mg, was acetylated as described for the prepn of **6a**. HPLC on the PAC column gave **14b** (elution vol 54–60 ml, 10% 2-propanol-hexane).

Epimeric petunasterone G₁ (15a) and G₂ (15b). **15a** from MeCN–H₂O, mp 218–220°, $[\alpha]_{(25, \text{nm})}$ (589) + 16°, (578) + 17°, (546) + 18°, (436) + 10°, (365) – 108° (MeOH, c1), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{–1} 3450 br (OH), and 1670 (conj CO), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 246 (log_ε 4.15), MS *m/z* (rel int %) 461 3269 ([MH]⁺, 9), 443 ([MH]⁺ – H₂O, 9), 425 ([MH]⁺ – 2H₂O, 5), 407 ([MH]⁺ – 3H₂O, 5). C₂₈H₄₄O₅ + H requires 461 3267.

15b from MeOH, mp 271–275° (darkens gas evol), $[\alpha]_{(25, \text{nm})}$ (589) + 19°, (578) + 20°, (546) + 21°, (436) + 17°, (365) – 86° (MeOH, c1), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{–1} 3450 br (OH), and 1670 cm^{–1} (conj CO), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 247 (log_ε 4.16), MS *m/z* (rel int %) 461 3285 ([MH]⁺, 15), 443 ([MH]⁺ – H₂O, 6), 425 ([MH]⁺ – 2H₂O, 4), 407 ([MH]⁺ – 3H₂O, 3). C₂₈H₄₄O₅ + H requires [MH]⁺ 461 3267.

Conversion of petunasterone C (9) into petunasterones F (14a), G₁ (15a) and G₂ (15b). In 4 ml of dioxane (purified through alumina) was dissolved 40 mg of **9**. To this soln was added 1 ml of H₂O followed by 50 μ l of N HClO₄. Progress of the reaction was followed by HPLC on the R Sil C-18 column (MeCN–H₂O, 7:3). All starting material was consumed after ca 2 hr and the three major zones corresponding to **14a**, **15a** and **15b** were sep'd preparatively on the same column (respective yields 8, 10, and 10 mg). These materials were chromatographically and spectroscopically identical to the compounds described above. One additional substance (elution vol 53–57 ml, MeCN–H₂O, 7:3), 3 mg, had a structure similar to **14a** (by NMR) but was not identified.

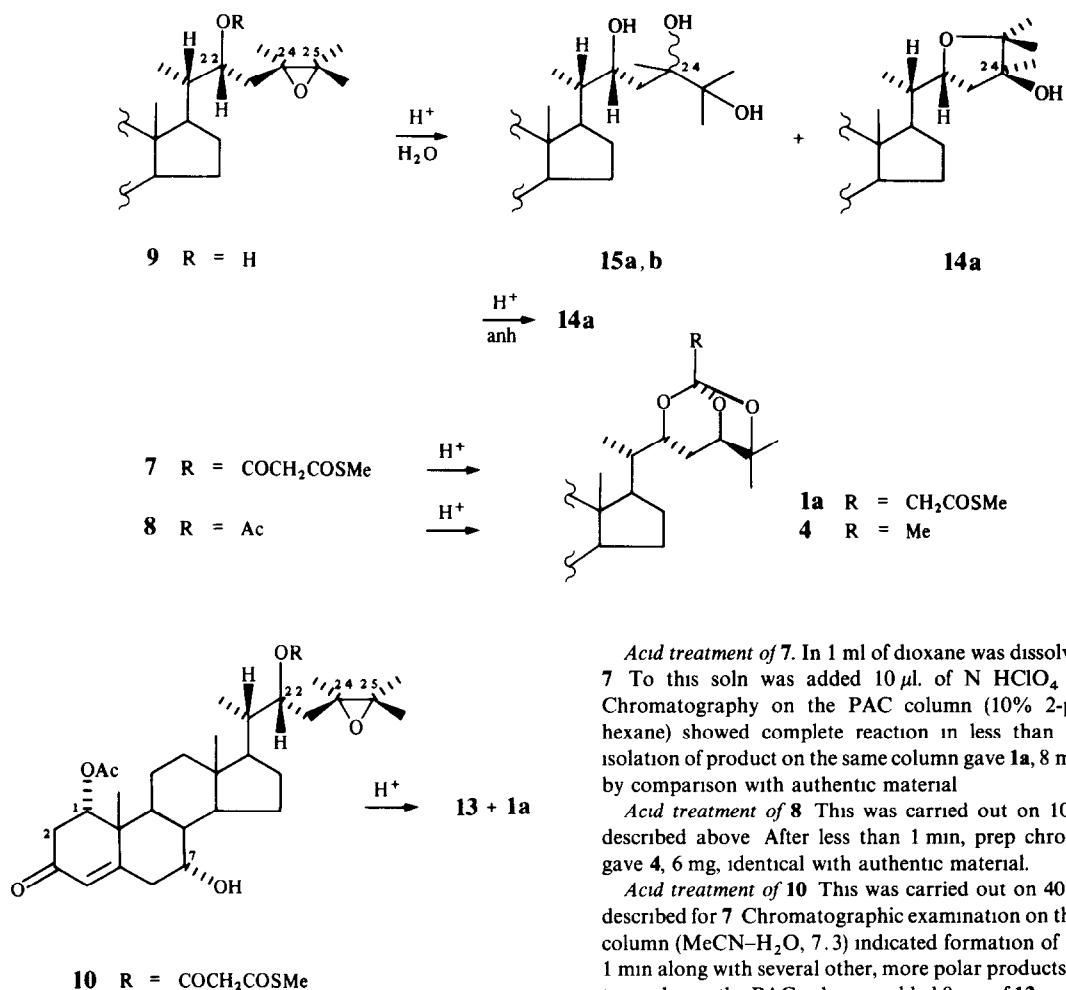

In a separate expt, 40 mg of **9** was dissolved in 1 ml of dioxane and 25 μ l of 0.5 M HClO₄ in dioxane (prepared by dil conc HClO₄ with 10 parts dioxane) was added. HPLC under the above conditions showed no starting material after 1 min and no further reaction on longer standing. The main product, 27 mg, was pure crystalline **14a** accompanied by ca 6 mg of unidentified related material (elution vol ca 35–40 ml).

Table 4. ¹³C NMR data* for compounds **15** and **16**

Carbon	15a	15b	16a	16b
1	159.5, CH	159.4	75.4, CH	75.4, CH
2	127.6, CH	127.6	40.3 ^a , CH ₂	40.3 ^a , CH ₂
3	188.3, C	188.3	198.0, C	198.0, C
4	126.9, CH	126.9	126.1, CH	126.2, CH
5	170.1, C	170.0	168.7, C	168.7, C
6	42.2 ^a , CH ₂	42.2 ^a	42.0, CH ₂	42.0, CH ₂
7	70.5 ^b , CH	70.5 ^b	68.5, CH	68.5, CH
8	40.8, CH	40.9	40.5, CH	40.5, CH
9	45.8, CH	45.8	38.1, CH	38.1, CH
10	45.3 ^c , C	45.3 ^c	43.8 ^b , C	44.2 ^b , C
11	23.7, CH ₂	23.7	21.5, CH ₂	21.5, CH ₂
12	40.5 ^a , CH ₂	40.5 ^a	40.5 ^a , CH ₂	40.5 ^a , CH ₂
13	43.9 ^e , C	44.0 ^e	43.3 ^b , C	43.3 ^b , C
14	51.3, CH	51.2	51.4, CH	51.4, CH
15	24.8, CH ₂	24.7	24.6, CH ₂	24.6, CH ₂
16	28.7, CH ₂	28.5	28.7, CH ₂	28.5, CH ₂
17	54.2, CH	54.3	54.2, CH	54.3, CH
18	12.3, CH ₃	12.3	12.2, CH ₃	12.2, CH ₃
19	18.9, CH ₃	18.8	18.3, CH ₃	18.3, CH ₃
20	44.4, CH	43.2	44.4, CH	43.2, CH
21	12.7, CH ₃	12.9	12.7, CH ₃	13.1, CH ₃
22	70.9 ^b , CH	71.4 ^b	70.9, CH	71.4, CH
23	36.8, CH ₂	34.1	38.5, CH ₂	34.1, CH ₂
24	76.1 ^d , C	76.2 ^d	76.1 ^c , C	76.2 ^c , C
25	77.3 ^d , C	78.3 ^d	77.3 ^c , C	78.3 ^c , C
26	25.3 ^e , CH ₃	24.8 ^e	25.3 ^d , CH ₃	24.8 ^d , CH ₃
27	25.2 ^e , CH ₃	24.8 ^e	25.2 ^d , CH ₃	24.8 ^d , CH ₃
28	22.6 ^e , CH ₃	22.1 ^e	22.6 ^d , CH ₃	22.2 ^d , CH ₃
Acetate			172.0, C	172.0, C
			20.8, CH ₃	20.8, CH ₃

* In ppm from internal TMS for CD₃OD solutions

^{a–e} Values with like superscripts may be interchanged

Acid treatment of 7. In 1 ml of dioxane was dissolved 16 mg of 7. To this soln was added 10 μ l. of N $HClO_4$ in dioxane. Chromatography on the PAC column (10% 2-propanol in hexane) showed complete reaction in less than 1 min. Prep isolation of product on the same column gave 1a, 8 mg, identified by comparison with authentic material

Acid treatment of 8 This was carried out on 10 mg of 8 as described above. After less than 1 min, prep chromatography gave 4, 6 mg, identical with authentic material.

Acid treatment of 10 This was carried out on 40 mg of 10 as described for 7. Chromatographic examination on the R Sil C-18 column (MeCN-H₂O, 7:3) indicated formation of 13 within ca 1 min along with several other, more polar products. Rechromatography on the PAC column yielded 8 mg of 13 and 2 mg of 1a.

Petuniasterones H₁ (16a) and H₂ (16b) These compounds are C-24 epimers and could not be completely sep'd from each other under the chromatographic conditions used. 16a, IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3450 br (OH), 1730 (acetate) and 1670 (conj. CO), UV λ_{max}^{MeOH} nm 241, MS *m/z* (rel. int. %) 538 ([MNH_4]⁺, 100) $C_{30}H_{48}O_7 + NH_4$ requires [MNH_4]⁺ 538

16b, IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3450 br (OH), 1730 (acetate) and 1670 (conj. CO), UV λ_{max}^{MeOH} nm 240, MS *m/z* (rel. int. %) 538.3621 ([MNH_4]⁺, 100) $C_{30}H_{48}O_7 + NH_4$ requires [MNH_4]⁺ 538.3743

Conversion of petuniasterones H₁ and H₂ into petuniasterones G₁ and G₂ Compounds 16a and 16b were treated with 0.5 M NaOMe-MeOH as described for the conversion of 13 into 1b. HPLC on the RSil C-18 column (MeCN-H₂O, 7:3) of the products gave 15a from 16a and 15b from 16b which were identified by chromatographic and spectral comparison.

Acknowledgements—We thank S. C. Witt for collection of NMR data and R. England and Dr. W. F. Haddon for MS determinations

REFERENCES

- Elliger, C. A., Benson, M., Haddon, W. F., Lundin, R. E., Waiss, A. C. Jr and Wong, R. Y. (1988) *J. Chem. Soc. Perkin Trans I* 711
- Elliger, C. A., Benson, M., Haddon, W. F., Lundin, R. E., Waiss, A. C. Jr and Wong, R. Y. (1988) *J. Chem. Soc. Perkin Trans I* (in press)
- Becker, E. D. (1980) *High Resolution NMR* 2nd Edn, p. 72 Academic Press, New York